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Abstract
The global spread of antibiotic resistance poses a significant threat to public health and is one of the main causes of this 
problem. Livestock farming plays a significant role in the horizontal and vertical transmission of treatment-resistant genes 
and bacteria. These processes involve contact with agricultural products and the environment, raising concerns for public 
health, and farming communities. The farming community is composed of a staggering 608 million farms worldwide, and 
their livelihood depends heavily on livestock farming. To address this issue, a multidisciplinary One Health approach focusing 
on integrated monitoring and intervention for humans, animals, and the environment is essential. Water, sanitation, 
and hygiene (WaSH) programs have the potential to significantly reduce the risk of exposure to antibiotic-resistant 
bacteria, particularly extended spectrum beta-lactamase (ESBL) Escherichia coli, by obstructing the transmission route 
between humans and animals. Additional risk reduction measures for ESBL E. coli infection in animals include 
vaccination and biosecurity program implementation. Water, sanitation, and hygiene and biosecurity measures must 
be combined to maximize the effectiveness of the One Health program. Therefore, this study aimed to describe recent 
advances in biosecurity and WaSH interventions in the livestock environment, analyze the effects of these interventions 
on human and animal health, and investigate potential future scenarios within the quantitative microbial risk 
assessment framework. This study used an integrative literature review through searches of four databases, a review of 
World Health Organization documents through websites, and an examination of relevant texts from previously obtained 
reference lists. Although hygiene and sanitation are often combined, there is still a lack of quantitative evaluation of the 
efficacy of integrating WaSH with biosecurity in livestock. In addition, the integration of the WaSH program with 
biosecurity has potential as a One Health intervention in the coming years.

Keywords: antibiotic-resistant bacteria, biosecurity, extended-spectrum beta-lactamase Escherichia coli, One Health, 
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Introduction

In recent decades, the emergence and spread of 
antimicrobial resistance (AMR) has become a signif-
icant threat to the health of people, animals, plants, 
and the environment [1]. Antibiotic-resistant bacteria 
(ARBs) are expected to be responsible for 1.27 mil-
lion fatalities in 2019 [2], demonstrating the devas-
tating effects of AMR. At present, the transmission 
of AMR extends beyond clinical and pharmaceutical 
settings and penetrates the agricultural sector, par-
ticularly livestock farming. This sector is of great 

concern because the horizontal and vertical transmis-
sion of ARB and antibiotic resistance genes (ARGs) 
occurs through contact with agricultural products and 
the environment [3, 4], leading to various diseases in 
humans. The main routes of transmission to the human 
digestive system include oral, skin, and inhalation [5]. 
The oral route is predominant, usually facilitated by 
contaminated livestock manure [6] and water polluted 
with wastewater [7]. As soon as an ARB enters the 
human body, subsequent colonization and infection 
can lead to severe disease. Consumption of antibiotics 
by livestock was positively correlated with the pres-
ence of ARB in humans (1.07 [CI 95% = 1.01–1.13], 
p = 0.020) [8]. Extended Spectrum beta-lactamase 
(ESBL) Escherichia coli is a critically resistant bacte-
rium recommended for in-depth research by the World 
Health Organization (WHO) [9, 10] due to its ability 
to cause fatal prolonged diarrhea [11].

The livestock sector accounts for 40% and 20% 
of developed and developing countries, respectively, 
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with 608 million farms worldwide [12]. Therefore, 
farmers are highly vulnerable to AMR exposure, 
which can be influenced by risk factors, such as haz-
ards, transmission routes, and other determinants, 
often applied in the pathogen mapping process [13]. 
The most frequent risks include improper use of 
agents, poor water, sanitation, and hygiene (WaSH) 
infrastructure, and insufficient measures for infection 
control and prevention [14]. Pathway factors encom-
pass types of agriculture, environmental routes, and 
antibiotic consumption [15], whereas indirect fac-
tors include urbanicity and multidimensional wealth 
index [16].

The WHO, OIE, FAO, and UNEP have estab-
lished the One Health policy to combat the spread of 
AMR. This policy aims to achieve holistic health for 
humans, animals, and surrounding plants [17] through 
comprehensive transmission analysis, integrated sur-
veillance, interventions, behavioral changes, and eco-
nomic policies [18]. Biosecurity measures, including 
restrictions on antibiotic prescriptions and vaccina-
tions, are currently applied in the livestock sector to 
reduce the risk of AMR transmission. From a medical 
point of view, biosecurity encompasses cross-sectoral 
areas such as the prevention of zoonosis, food safety, 
plant health, animal and plant biosafety, and invasive 
species control. In the livestock sector, biosecurity 
programs are the first line of disease control measures 
and are usually implemented within specific areas of 
concern [19]. However, there have been limitations, 
such as inadequate implementation on large farms and 
lack of stakeholder engagement opportunities [20].

In the field of environmental engineering, 
WaSH approaches, such as clean water supply, 
regular water quality checks, periodic cleaning of 
animal pens, and handwashing practices, are prom-
ising for reducing the risk of AMR. This program 
has been effectively implemented in domestic envi-
ronments [21, 22], schools [23], and healthcare facil-
ities [24–26]. The World Health Organization and 
UNICEF launched a monitoring strategy for the 2030 
Agenda for Sustainable Development Goal 6, which 
aims to provide water for all. However, it has not yet 
been extended to the livestock industry [27]. In view 
of the urgency of the One Health program to combat 
AMR, the integration of WaSH and biosecurity pro-
grams has significant potential for infection prevention 
in livestock areas. In view of the close links between 
people, animals, and the environment in these places, 
this integration is crucial.

The proposed WaSH program to minimize 
the spread of AMR in livestock environments [28] 
remains largely conceptual. On the other hand, the 
implementation of biosecurity measures to com-
bat AMR remains limited, especially in developed 
countries [29, 30], due to their complexity. Recently, 
integrating WaSH with biosecurity has emerged as a 
means [20, 31] of enhancing control within the One 
Health program. This review, based on the principles 

of WaSH and biosecurity, aimed to (1) provide an over-
view of the global prevalence of ARB, specifically 
ESBL E. coli, (2) describe recent advancements in 
WaSH and biosecurity interventions in livestock envi-
ronments within the context of One Health, (3) assess 
the effects of these interventions on human and ani-
mal health, and (4) explore potential future scenarios 
on quantitative microbial risk assessment (QMRA). 
Moreover, it emphasizes the examination of sanitation 
and water elements at points (2) and (3), focusing on 
environmental engineering aspects of livestock that 
have not been extensively discussed in the previous 
research.
Review Method

The literature search was limited to 2007–2022, 
which encompasses extensive studies conducted on 
ARBs in livestock over the past decade. The key-
words “livestock AND hygiene” and “livestock AND 
sanitation” were used to search the Scopus, EMBASE, 
PubMed, and AGRIS. In addition, publications on 
the WHO website featuring the latest developments 
in antibiotic resistance was examined. To commence 
text synthesis, the acquired literature was collated in 
the Zotero library.

Inclusion criteria, including studies published in 
English pertaining to animal husbandry and an expla-
nation on hygiene, sanitation, and biosecurity aligned 
with the objectives of the study, were used to facilitate 
the text synthesis. This review included 67 studies, 
including research papers and WHO publications.

Each study was subjected to a rigorous review 
process and data extraction was performed on elements 
related to the size of the intervention. Subsequently, 
the data were grouped and synthesized based on cate-
gories such as resistance tendency of E. coli to antibi-
otics, quantitative value of existing interventions, and 
direction of future interventions.
Worldwide Prevalence of ESBL E. coli in 
Livestock

Extended-spectrum beta-lactamase E. coli from 
livestock and the surrounding environment can be 
transmitted to humans through both horizontal and 
vertical mechanisms, with the horizontal mode being 
more common [32]. Complex horizontal transmission 
through ARGs occurs mostly in humans, animals, and 
the environment [33]. In addition, vertical transmission 
includes the spread of ARB in the same agricultural 
area or between farms. The transfer process facilitated 
by ARGs is more common in plasmids, such as trans-
posons, gene cassettes, and integrons than in mobile 
genetic elements (MGEs) [34].

In 2019, the highest number of projected deaths 
due to AMR was observed in South Asia, reach-
ing 389,000 cases, with a global disease burden of 
619 disability-adjusted life year per 100,000 indi-
viduals [2]. These projections were calculated using 
statistical predictive models based on collected 
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secondary data on sepsis, infection syndromes, 
case-fatality ratios, pathogen distribution, antibiotic 
use, resistance prevalence, resistance profiles, rela-
tive risk of death, and relative length of hospital stay. 
Surveillance data are crucial to obtain accurate AMR 
disease burden values. In livestock environments, 
AMR surveillance data are primarily obtained through 
the prevalence of ESBL E. coli against one or more 
antibiotics. Extended Spectrum beta-lactamase E. coli 
testing involves sampling from various sources, includ-
ing pooled fecal materials, cloacal swabs, feed items, 
and environmental samples, such as soil, compost 
products, sewage water, and digester output. Several 
non-standardized laboratory analysis techniques, 
such as conventional culture, antibiotic susceptibility 
testing, microdilution broth, molecular quantitative 
polymerase chain reaction, whole-genome sequenc-
ing techniques, and combinations of conventional and 
molecular methods, are often employed during the 
estimation process.

The use of antimicrobials in agricultural activ-
ities, such as incorporating antimicrobials into 
feed, administering antibiotics to animals, and 
implementing biosecurity measures in the farm 
area, affects the prevalence of ESBL E. coli. As a 
result, there are differences in the number of ESBL 
E. coli identified on farms between countries [32]. 
This differs between livestock species, with poul-
try farms generally having a higher prevalence than 
ruminants [33].

A comparison of ESBL E. coli prevalence 
between developed and developing countries 
should be performed with caution. For example, 
ESBL E. coli has been reported at a rate of 39% in 
Canadian cattle farms [35], whereas pig farms in the 
United Kingdom reported only 2% [36]. In Italy, the 
prevalence was 23.3% [37], whereas in France, the 
prevalence was 5%, and in Japan, it reached 5.2% 
[38]. In Africa, fecal samples of Ethiopian cat-
tle have a higher prevalence (52%) [39], whereas 
broiler farms in Zambia have reported lower val-
ues [40]. Pig farms in Nigeria recorded 41.2% [41], 
Cameroon recorded 59.1% [42], and Kenya had the 
highest value at 81% [43]. In Asia, India reported an 
occurrence rate of up to 75% [44], whereas Qatar 
reported 18% [45]. In Indonesia, 35.7% of broiler 
farms [46] and 52% in Sri Lanka [47] were detected. 
A study [48] found a greater incidence of ESBL E. 
coli (16.8%) in water samples bathed by buffaloes 
compared to water used for bathing, washing, and 
community sanitation.

The prevalence of multidrug-resistant 
(MDR) E. coli has been observed in Asia [49–54], 
Africa [55–58], and four European countries [59], with 
varied rates and resistance to more than four types of 
medicines. Further research is required to understand 
the transmission mechanism of MDR E. coli within 
agricultural contexts and the risk variables that affect 
temporal changes.

Water, Sanitation, and Hygiene and 
Biosecurity Measures in Livestock 
Environments in the Context of One Health

One Health approach balances human, animal, 
plant, and ecosystem health. Over the past decade, the 
implementation of this program has involved cooper-
ation between veterinarians and cross-governmental, 
multi-sectoral, and environmental experts. In Africa, 
21 countries have formed a One Health platform to 
facilitate resource sharing and evaluate One Health 
activities [60]. The WHO has developed a Global 
Action Plan on AMR, which will be implemented in 
the National Action Plan on AMR by countries world-
wide. The effects of NAP on AMR were evaluated 
every 5 years. For example, Bangladesh NAP study on 
antimicrobial stewardship (AMS) identified a policy 
gap in the form of tight operational, monitoring and 
assessment frameworks, precise funding mechanisms, 
and guidelines for AMS in the veterinary field [61].

In addition to this collaborative approach, the 
WHO initiated a surveillance stage to build a data-
base of ARBs in 2015 [62]. Developed countries sup-
port developing countries in the implementation of 
innovative integrated surveillance programs. Cocker 
et al. [63] conducted a longitudinal cohort survey 
study in rural, peri-urban, and urban areas of Malawi. 
This study found that the critical risk of ESBL 
Enterobacterales colonization in humans is closely 
related to environmental sanitation, urbanization, and 
the rainy season.

Although the prevalence of infections due to 
exposure to ARBs in livestock and the human envi-
ronment tends to be lower than that in humans [64], 
preventive measures to reduce the transmission of 
bacterial infections in good animal husbandry need to 
be continuously applied. It is expected that the WaSH 
program for reducing environmental impacts com-
bined with a biosecurity program to stop the spread 
of pathogens in the livestock sector will be one of the 
most effective intervention tools. According to the 
WHO definition of WaSH, water refers to the provi-
sion of safe drinking water, sanitation involves the safe 
handling of feces, and hygiene focuses on improving 
basic hygiene practices. The following are the recent 
developments in WaSH and biosecurity measures to 
control the spread of pathogens, addressing ESBL 
E. coli and common pathogenic bacteria in livestock.

Hygiene is often used in large-scale or small-
scale intensive and extensive livestock farming 
worldwide. Hygiene-related efforts include (1) imple-
menting standard procedures [65, 66]; (2) regularly 
cleaning equipment and maintaining pens [67–74]; 
(3) using farm clothing and personal protection 
equipment (PPE) to practice personal hygiene, along 
with cleaning body parts in contact before and after 
work [75, 76]; (4) periodically inspecting equipment 
and PPE [77]; and (5) scheduling the washing of large 
livestock [78]. Depending on the standard procedures 
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used, various cleaning techniques were applied. These 
include a combination of washing, rinsing with water, 
and disinfectant spraying [67, 70, 71, 73], washing 
with detergent only [69], washing followed by rinsing 
with an acidic solution [79], and disinfectant spraying 
only [74].

Recent developments in sanitation include (1) 
handling livestock feces [80–84] and (2) application 
of technology to control fecal contamination in the 
environment [68, 85–87]. Managing livestock feces 
involves protecting areas by covering storage con-
tainers [68]. Other methods include relocating feces 
during the summer season [80], transferring the col-
lected samples into specific containers or rooms [81], 
grinding after naturally drying for 100 days [82], and 
adding straw and sawdust [83, 84]. Fecal contamina-
tion can be controlled through anaerobic digestion 
processes conducted in slurry pits for conversion into 
biogas and liquid manure [68, 85, 86], composting to 
obtain solid manure [87], and the conversion of feces 
into biochar [88].

The processing of feces usually produces agri-
cultural products, biochar, or liquid fertilizers from 
biodigesters which are directly applied to the soil. 
Both ARGs and MGEs in fertilizers increased the 
abundance of native soil ARGs [89]. The soil ARG 
profile is significantly influenced by the micro-
bial community structure, MGEs, pH, and heavy 
metals [90]. A setback distance of up to 40 m around 
the experimental plots with solid manure applied 
should be installed to prevent runoff from leaching 
livestock feces into the soil during rainfall [91]. As the 
distance approached 40 m, the ARGs and MGEs pres-
ent in the solid manure were carried by runoff water, 
reducing their impact on the resistome and mobilome 
in the surrounding area.

Improving the quantity and quality of water is very 
important for livestock, farmers, and surrounding com-
munities. Water aspects of WaSH include (1) increas-
ing water quantity for domestic purposes [92], 
(2) ensuring water quality [75, 76, 83, 84, 93, 94], and 
(3) separating water sources for livestock and human 
consumption [73]. The approach to water management 
differs between developed countries and developing 
countries because clean water in developing countries 
can originate from various non-piped sources [95]. In 
addition, rainwater and groundwater are clean sources 
for livestock farming. Drinking water for workers on 
large farms is provided in refillable bottles or bot-
tles. Ensuring water quality involves the addition of 
chlorine [84] and oxygen peroxide [83] to kill patho-
gens, as well as the application of antibiotics [96] and 
organic acids [94] in pipeline systems to maintain 
health or treat poultry diseases. Further, treatments, 
such as water heating and iron removal systems [97], 
are employed for non-piped water sources to promote 
livestock and human health in surrounding areas.

Biosecurity approaches, as described by Constable 
et al. [98], encompass: (1) checking or isolating newly 

introduced livestock species; (2) controlling visitor 
contact; (3) managing contact between livestock, pets, 
and wild animals entering the farm; (4) separating 
sick livestock; (5) cleaning and disinfection practices; 
(6) disease monitoring and record-keeping; and (7) 
conducting communication, training, and employee 
assessment. According to Pinto Jimenez et al. [20], 
biosecurity programs include bioexclusion, biocon-
tainment, and biomanagement programs. Bioexclusion 
prevents the emergence of new pathogens, biocontain-
ment restricts their entry, and biomanagement includes 
the control of existing pathogens in the agricultural 
environment. The discussion on biocontainment [94] 
aligned with the overlapping hygiene terminology in 
the WaSH program.

Farmers can monitor the implementation 
of biosecurity by means of paper-based or soft-
ware-based checklists. Biocontainment actions based 
on the collection of biosecurity checklist exam-
ination data and farmer interviews include fencing 
around farm areas [76, 99–101], venting in livestock 
barns [101–103], and separation and quarantine mea-
sures [66, 68, 76, 80–82, 93, 99, 100, 102]. Other meth-
ods include restricting visitors and wild animals from 
entering the farm area [67, 80, 81, 83, 99, 101–103], 
limiting the number of livestock herds [103, 104], 
designing secure livestock housing [79, 81, 83, 105], 
and properly handling dead livestock [66, 106]. 
Longitudinal research carried out in Germany focused 
on the management of pigs suspected to be infected 
with ESBL E. coli through herd eradication followed 
by health examinations of farmers [106]. Sick farm-
ers were monitored for 3 months and replaced with 
healthy individuals; they could resume work only 
if they stopped experiencing diarrhea and showed 
improvement in the nasal swab. Subsequently, farm 
owners implemented a shift rotation control. This 
study demonstrates the importance of eradicating 
ARB-infected livestock and consistently implement-
ing quarantine measures when introducing new or iso-
lated unhealthy livestock from the herd.

One Health research mainly focused on surveil-
lance [107] to understand the transmission process. 
However, studies on interventions are limited [31]. 
The WaSH biosecurity program can be integrated into 
a series of intervention steps to address this gap. As 
outlined by O’Cathain et al. [108], these steps include 
problem identification, literature review, prepara-
tion, feasibility testing through pilot tests, optimiza-
tion, evaluation, and long-term implementation. In 
addition, One Health-based WaSH biosecurity inter-
vention program can take the form of managerial, 
structural, educational/behavioral, biological/chemi-
cal, and physical/infrastructural approaches [31].

As a first step in the intervention research offered 
by the WaSH biosecurity program, integrative WaSH 
biosecurity scenarios must be tested on an integrated 
farm. In the course of the test, the risk recipient targets 
must include humans, animals, and the environment. 
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One health issue should be considered by optimiz-
ing (1) WaSH with human and environmental health 
targets and (2) biosecurity through livestock health 
targets.
The Effects of Existing WaSH and Biosecurity 
Strategies

The odds ratio (OR) of ESBL E. coli and com-
mon pathogen bacteria in the literature was used to 
review the function of WaSH and biosecurity appli-
cations, representing a comparison between farmers 
who implemented the interventions and their counter-
parts (Table-1) [72, 76, 80, 84, 92, 99]. The ORs were 
derived entirely from interviews with the farmer pop-
ulation who indicated the magnitude of the impact of 
the implementation of both programs. The higher val-
ues suggest a greater expected impact, thereby reduc-
ing the risk of ARB infection in farmers and livestock.

An adequate supply of clean water sig-
nificantly contributes to the operational aspects 
of livestock farming, with an OR of 1.89 
([CI 95% = 1.1–2.78], p = 0.05) [92]. Disinfection 
efforts for drinking purposes had an OR of 1.96 ([CI 
95% = 0.52–7.39], p = 0.32) [76]. The OR for hygiene, 
which includes cleaning followed by disinfection, was 
3 ([CI 95% = 1.2–7.5], p = 0.05) [72]. Similarly, the 

use of PPE had an OR of 3 ([CI 95% = 0.6–15.9], 
p = 0.2) [80]. Sanitation interventions were assessed 
based on the log removal value (LRV), which indi-
cates the level of ARB reduction in logarithmic 
units after completion of the sanitation process. 
Composting, ordinary biodigestion, and biodigestion 
with a bioslurry pit can achieve bacterial LRVs of 
1–2 [87], 1–2 [86], and 6.11, respectively, for ESBL 
E. coli [85]. Another aspect of sanitation, such as 
the addition of straw to litter [84], has an OR of 0.87 
([CI 95% = 0.57–1.33], p = 0.53).

According to Mridha et al. [76], the over-
all implementation of biosecurity has an OR of 
3.37 ([CI 95% = 0.71–16.06], p = 0.12), whereas 
another investigation [99] reported a lower OR of 
1 ([CI 95% = 0.16–0.94], p = 0.035]. Moreover, 
recent biosecurity interventions on poultry farms 
and slaughterhouses in the Netherlands to address 
Campylobacter spp. (a pathogenic bacterium) have 
focused on disease occurrence that affects the health 
of broiler chickens for human consumption [109]. The 
combined effectiveness of insect control efforts, barn 
cleanliness, and visitor control resulted in a minimum 
reduction of 5%–10%.

In Burkina Faso, studies on small-scale chicken 
farms have used a different approach to disrupt 

Table-1: WaSH and biosecurity intervention based on the OR of previous studies.

Reference Type of intervention OR

Dohmen et al. [80] Hygiene intervention:
Using gloves when treating piglets 3 (CI 95% = 0.6–15.9),  

p = 0.2
Caudell et al. [92] Water intervention:

Increased water supply for domestic purpose 
(non-livestock)

1.89 (CI 95% = 1.1–2.78),  
p = 0.05

Mridha et al. [76] Water intervention:
Maintain water quality 1.96 (0.52–7.39 CI 95%;  

p = 0.32)
Hygiene intervention:

Attendants’ hand rinse water 0.41 (0.12–1.34 CI 95%;  
p = 0.14)

Biosecurity intervention:
Overall biosecurity on farm application (provision of 
perimeter fencing, netting of the farm, footwear clean 
entry in the farm, all-in all-out practice)

3.37 (0.71–16.06 CI 95%;  
p = 0.12)

Adebowale et al. [99] Biosecurity intervention:
Presence of isolation bay for sick animals,
Quarantining of new animals on arrivals,
Restriction visit to other farms,
Access to farms by farm buyers,
Access to farms by feed transport vehicles,
Ownership of farm equipment,
Use of farm equipment from other farms.

1 (0.16–0.94 CI 95%)

Coffman et al. [72] Hygiene intervention:
Conducted any pesticide application or cleaning activity 3 (1.2–7.5 CI 95%)
Used any PPE 0.3 (0.1–1.5 CI 95%)
Washed hands at least 8 times per shift 0.3 (0.1–0.8 CI 95%)

Sanni et al. [84] Water intervention:
Dug-up well using chlorination 0.42 (0.3–0.58 CI 95%,  

p < 0.001)
Sanitation intervention:

Litter materials for litter management 0.87 (0.57–1.33 CI 95%,  
p = 0.53)

PPE=Personal protection equipment, WaSH=Water, sanitation, and hygiene, OR=Odds ratio
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the transmission of pathogens. The experts con-
cerned [110, 111] focused on the children of farmers 
and provided supervision for hand hygiene, feed-
ing practices, and biocontainment of animal feces. 
To reduce inadvertent soil and fecal ingestion in 
children, participatory behavioral change sanitation 
programs combined with biocontainment were imple-
mented through two-way communication. Similar 
participatory behavior-based sanitation programs 
have been practiced in pastoralist communities in 
Ethiopia [112], raising awareness of the importance 
of maintaining clean water and sanitation infrastruc-
ture. Strengthening WaSH and biosecurity measures 
in livestock farming disrupts the chain of disease 
transmission between animals and reduces the risk of 
exposure in animals and humans. These strategies can 
reduce the incidence of disease in livestock, leading 
to a reduction in antimicrobial use, in particular anti-
biotics, thereby suppressing the possible emergence of 
ARB.

Research on the combined implementation of 
WaSH and biosecurity programs over the last 5 years 
has highlighted the impact of these programs. While 
there is a significant amount of literature on WaSH 
or biosecurity, the impact of these interventions has 
not been analyzed using OR, which is a limitation of 
this review. Literature on other pathogenic bacteria 
has also been included due to a lack of literature on 
ESBL-specific E. coli.
Quantitative Microbial Risk Assessment 
Framework in the Livestock Environment for 
Farmers

Antibiotic-resistant bacteria in farm areas can 
originate from feed, antimicrobial use, and medica-
tions for sick livestock. Antimicrobials, antibiotics, 
and feed consumed by livestock are processed in the 
gut and excreted in the feces. Animal feces are consid-
ered hotspots due to the presence of pathogens, both 
in their original state and in processed forms, such as 
manure and slurry [113].

Manure or slurry tends to bind to pathogens, 
antibiotic residues, and chemical stressors compared 
with raw animal waste. These materials are referred 
to as hotspots for ARGs and MGEs even though their 
concentration depends on processing method and 
storage conditions. Moreover, gene transfer can occur 
immediately after the application of manure or slurry 
to the soil, even under unfavorable conditions [114]. 
feedwater, soil, and feed are potential exchange points 
for ARGs and ARBs between humans and animals. 
The resistant pattern of E. coli has been found in soils 
with direct or processed contact with animal feces. In 
Thailand, Tanzania, Peru, and Bangladesh, they are 
also observed in humans, cattle, and soil [33]. The 
risk of exposure to resistant E. coli is higher in indi-
viduals who maintain animals near their homes than 
those who separate livestock areas from their living 
spaces [115].

The risk of human exposure to microorganisms 
has been evaluated using deterministic or stochastic 
QMRA method [116]. This model involves hazard 
identification, exposure estimation, dose-response 
calculation, and risk characterization through ARB 
transmission across the oral route. According to 
QMRA research, individuals can be directly or indi-
rectly exposed to animal feces through airborne, 
oral, or fomite transmission routes [11]. Inhalation 
exposure by farmers in direct contact with raw and 
processed manure and slurry differed from the expo-
sure of workers to the digestive system. Research 
conducted in Beijing, China, revealed that inhalation 
exposure due to manure being a hotspot is less than 
that from drinking water or ingesting waste and soil 
while working [117]. There are limited specific inves-
tigations of AMR indicating which exposure pathway 
is associated with a higher risk.

Once hazard identification was conducted, the 
next step in QMRA was to calculate the exposure 
through hand-to-mouth contact while handling animal 
feces, which was estimated by multiplying the ARB 
concentration by the manure ingestion rate. Exposure 
through soil ingestion when feces were applied to 
agricultural land was estimated by multiplying the 
concentration of ARB by the soil ingestion rate. We 
performed a Monte Carlo simulation to calculate the 
uncertainty of the parameters and conducted a statisti-
cal sensitivity analysis. Ingestion rates in occupational 
farming are currently limited, and empirical data are 
mostly based on ingestion rates in the general adult 
population. Behavioral factors such as hierarchical 
health and safety interventions (e.g., engineering and 
administrative controls, PPE use) that can reduce 
intake or exposure time during hotspot handling are 
currently unavailable in developing countries [118]. 
Limited research has been carried out on exposure to 
ESBL E. coli and dose-response assessments for farm-
ers, partly because most studies have focused on non-
ARB microorganisms [119, 120], and relevant data on 
antimicrobial exposure remains lacking. Antimicrobial 
exposure includes vulnerability, resistance, tolerance, 
and persistence [121]. Therefore, ingestion rate and 
dose-response assessments of ESBL E. coli in farmers 
are potential opportunities for future research.
Potential Scenarios for Future WaSH and 
Biosecurity Interventions within the QMRA 
Framework

The incorporation of WaSH biosecurity into the 
QMRA framework can reduce the risk of exposure 
of farmers to ESBL E. coli and reduce the incidence 
of inadvertent soil and livestock feces ingestion. It 
is possible to reduce the frequency and duration of 
farmers’ daily interactions with soil and animal waste 
to reduce the rate of accidental ingestion. Reducing 
ESBL E. coli concentration should consider the 
WaSH principles outlined in the F-diagram [122], 
whereas biosecurity principles can be derived from 
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biocontainment and biomanagement. Implementing 
the WaSH biosecurity program involves biocontain-
ment and biomanagement, with water and sanitation 
components emphasizing fecal management, enhanc-
ing drinking water quality, and increasing farmers’ 
cleanliness [31]. Figure-1 alternatives for incorporat-
ing WaSH biosecurity to lower the concentration of 
E. coli ESBL.

The WaSH principles in the F-diagram, in 
sequential order, include: (1) animal and human 
fecal sanitation, (2) water quality improvement, 
and (3) personal hygiene, equipment, and food. 
The measures referred to in points (2) and (3) may 
be implemented together with biocontainment. 
Therefore, the combinations to reduce ESBL E. coli 
exposure following environmental engineering dis-
ciplines include (a) sanitation-biocontainment, 
(b) sanitation-water-biocontainment, (c) sanita-
tion-hygiene-biocontainment, (d) sanitation-wa-
ter-hygiene-biocontainment, and (e) addition of 
biomanagement to options (a) to (c). Decision anal-
ysis can be facilitated by various multicriteria deci-
sion-making tools commonly used in conjunction 
with QMRA using a participatory group discussion 
approach involving the community or stakeholders.

All available options must be analyzed accord-
ing to the needs of farmers, farming types, other risk 
factors such as vaccination programs for livestock, 
policies restricting the use of antibiotics exclusively 
for sick animals, and farmers’ understanding of 

antibiotic use. In addition, indirect factors, such as 
location and multidimensional wealth index, must 
be taken into account, especially in the case of farms 
located in developed or developing countries. The 
implementation of comprehensive biosecurity mea-
sures may be difficult in developing countries where 
small-scale farms are predominant. Therefore, opti-
mizing the integration of the WaSH program with 
biocontainment has been proposed as the best prac-
tice for reducing the prevalence of ESBL E. coli. In 
developed countries, additional risk factors, such as 
pathway factors, should be included in the implemen-
tation of WaSH biosecurity programs. The adoption of 
a single health approach through the consistent imple-
mentation of WaSH biosecurity activities involving 
stakeholders will reduce the exposure of ARBs to the 
farm environment.
Conclusion

The prevalence of critically resistant bacteria 
such as ESBL E. coli varies due to the use of anti-
biotics in livestock farming. As a result, there are 
difficulties in comparing developed and developing 
countries. In the livestock sector, it is essential to 
maintain high levels of hygiene to ensure the well-be-
ing of animals and prevent the spread of diseases. As 
part of the WaSH program, regular cleaning of equip-
ment and barns is emphasized to maintain optimal 
hygiene standards. Sanitation involves processing 
animal feces into manure, biogas, liquid fertilizer, and 

Figure-1: Water, sanitation, and hygiene–biosecurity program framework as an option to reduce extended spectrum beta-
lactamase concentrations of Escherichia coli in livestock [Source: Prepared by Yudith Vega Paramitadevi using BioRender.com].
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biochar to control pollution. The quality of water was 
ensured by adding chlorine, organic substances, and 
advanced treatment methods. In addition, biosecurity 
programs focus on biocontaining or limiting the entry 
of pathogens into agricultural areas. In this study, we 
assessed the roles of WaSH and biosecurity based on 
the intervention effects obtained from interviews with 
farmers. Technological aspects of sanitation were 
evaluated using LRV. Water, sanitation, and hygiene 
and biosecurity programs are often carried out sepa-
rately; however, both reduce the risk of disease trans-
mission from humans and animals to humans. Several 
combined WaSH and biosecurity programs exist, 
but their intervention effects are typically described 
qualitatively. The development of WaSH biosecurity 
scenarios within the QMRA framework involved 
the identification of hazards and estimation of ESBL 
E. coli exposure with a view to reducing its prevalence 
and minimizing inadvertent soil and fecal ingestion 
rates. Scenarios should be considered on the basis of 
associated risk factors.
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