Molecular survey of zoonotic Anaplasma phagocytophilum and genetic evidence of a putative novel Anaplasma species in goats from Taif, Saudi Arabia

Mohamed W. Ghafar1 and Sayed A. M. Amer2,3

1. Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Egypt; 2. Department of Forensic Biology, College of Forensic Sciences, Naif Arab University for Security Sciences, Saudi Arabia; 3. Department of Zoology, Faculty of Science, Cairo University, Egypt.

Corresponding author: Sayed A. M. Amer, e-mail: samer@nauss.edu.sa
Co-author: MWG: mohamedghafar@hotmail.com

Received: 30-03-2019, Accepted: 06-05-2019, Published online: 03-06-2019

doi: 10.14202/IJOH.2019.54-59
How to cite this article: Ghafar MW, Amer SAM. Molecular survey of zoonotic Anaplasma phagocytophilum and genetic evidence of a putative novel Anaplasma species in goats from Taif, Saudi Arabia. Int J One Health 2019;5:54-59.

Abstract

Aim: Genus Anaplasma is of veterinary and public health importance, and its members utilize ruminants as key hosts in their epidemiology. To date, information about the occurrence and molecular identity of Anaplasma phagocytophilum and other Anaplasma species in Saudi Arabian goats is scarce. This study aimed to molecularly detect and characterize zoonotic A. phagocytophilum and other Anaplasma spp. in goats from Taif District, KSA.

Materials and Methods: Blood samples collected from 67 goats were polymerase chain reaction tested using common and A. phagocytophilum-specific primers targeting 16S rRNA and msp4 genes, respectively. Amplicons of common reactions were purified, sequenced, and analyzed.

Results: Six goats yielded positive results with common primers, whereas all animals proved negative for A. phagocytophilum. Analysis of the two successfully sequenced amplicons revealed the presence of a variant strain of Anaplasma ovis (99.52% ID) and a new Anaplasma organism, which was clustered with Anaplasma bovis (95.9% ID) and Aegyptianella pullorum (94.99% ID) and distinctly separated from all other recognized species of the genus Anaplasma.

Conclusion: The tested goats proved negative for A. phagocytophilum; however, we could not confirm that the area is pathogen free. A variant strain of A. ovis and a putative novel Anaplasma spp. were reported raising the concern of veterinary and zoonotic potential. Other genes should be sequenced and analyzed for complete identification of the detected organisms.

Keywords: Anaplasma ovis, Anaplasma phagocytophilum, goats, phylogeny, Saudi Arabia.

Introduction

Anaplasmataceae (Rickettsiales) encompasses five recognized genera: Anaplasma, Ehrlichia, Aegyptianella, Neorickettsia, and Wolbachia. Organisms of this family are obligatory intracellular Gram-negative bacteria of veterinary and public health importance [1,2]. Anaplasma includes seven species: Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, Anaplasma bovis, Anaplasma phagocytophilum, and Anaplasma capra [3,4]. The cellular tropism, host range, vectors, and pathogenicity of these species are variables [1].

A. marginale, A. centrale, and A. ovis are closely related intraerythrocytic pathogens of ruminants [5-7]. A. marginale is known to be highly pathogenic in cattle and can result in considerable economic losses [8,9]. A. centrale is less pathogenic, and, therefore, it has been used as a live vaccine against A. marginale in cattle [10,11]. A. ovis has moderate pathogenicity for sheep and goats; however, it can cause severe disease in animals exposed to stress factors [12-15]. Interestingly, variant strains of A. ovis were implicated in human disease in Cyprus and Iran [16,17]. A. platys is known to infect platelets and causes canine cyclic thrombocytopenia in dogs [18,19]; moreover, new closely related strains have been detected in camels, cattle, sheep, and goats, postulating that ruminants are a likely alternative host for A. platys [4,20-24]. Genomic evidence of A. platys was also identified in human patients from Venezuela, suggesting a potential public health risk [25]. A. bovis, a monocytotropic species, has been commonly recorded in cattle and buffalo from different countries [26-28]; noteworthy, 16S rRNA gene sequences of A. bovis have been identified in Chinese goats [24]. A. phagocytophilum is a zoonotic pathogen which replicates in granulocytes of many host species, including domestic ruminants, deer, horse, dog, rodents, and humans. The pathogen causes human, canine, and equine granulocytic anaplasmosis and tick-borne fever in ruminants [29-36]. A. capra, a newly recorded novel species, was identified in goats, sheep, ticks, and humans in China.

Copyright: Ghafar and Amer. This article is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
however, its vectors and infected cell types are unclear [3,4,37]. Other several candidates and unclassified Anaplasmataceae species were recently molecularly described [38-44].

According to what was stated above, it is obvious that ruminants (including goats) represent key hosts in the epidemiology of Anaplasma including zoonotic species. To date, information about the occurrence and molecular identity of Anaplasma species in Saudi Arabian domestic ruminants is scarce [45]. To the best of our knowledge, there is only one molecular survey of A. ovis and A. phagocytophilum in goats from Al Madinah region [46].

This study aimed to molecularly detect and characterize zoonotic A. phagocytophilum and other Anaplasma spp. in goats from Taif District, KSA.

Materials and Methods

Ethical approval
Blood samples were collected while slaughtering the goats at Taif abattoir; therefore, no ethical permission was needed.

Blood samples and DNA extraction
Blood samples were collected from 67 goats while slaughtering at Taif abattoir. These animals were residing at Taif district (approximately 21° 26' 14" N and 40° 30' 45" E), KSA. The samples were sent under refrigeration to Biotechnology Laboratory at Taif University and stored at −20°C until DNA extraction. According to the manufacturer’s protocol, purification of DNA was executed using AxyPrep Blood Genomic DNA Miniprep Kit (Cat. No. AP-MN-BL-GDNA-250).

Polymerase chain reaction (PCR) and sequencing
All samples were examined using PCR technique with common primer pair: ECC (5’- AGA ACG AAC GCT GGC GGC AAG CC-3’) and ECB (5’- CGT ATT ACC GCG GCT GGC A-3’). These oligonucleotides were used to amplify the target sequence of 16S rRNA gene of Anaplasma spp. [47,48]. Animals were also tested using MAP4AP5 (5’- ATG AAT TAC AGA GAA TTG CTT GTA GG-3’) and MSP4AP3 (5’- TTA ATT GAA AGC AAA TCT TGC TCC TAT G-3’) primers which target msp4 gene of A. phagocytophilum [49]. PCR reactions were implemented in 25-µl mixtures containing 12.5 µl GoTaq Green Master Mix (Promega Corporation, Madison, WI 53711-5399, USA), and 20 pmoles each primer. The thermocycle profile used in common reactions included 2-min denaturation at 94°C, 40 cycles (1-min denaturation at 94°C, 2-min annealing at 55°C, and 30-s extension at 72°C), and additional step of 5-min final extension at 72°C. The cycling program for the specific PCR using MAP4AP5 and MSP4AP3 primers implemented the following profile: initial 30-s denaturation at 94°C, 35 cycles (each consisting of 30-s denaturation at 94°C and combined 1-min annealing and extension at 55°C), and 5-min final extension at 72°C. Positive control samples obtained from a previous study using ECC and ECB primers [45] and negative “NO DNA” controls were included in each run. Amplicons were analyzed by agarose gel electrophoresis. Amplicons of ~500 bp and 849 bp indicate positive results for common and specific reactions, respectively.

Sequencing and analysis
According to the manufacturer’s instructions, target amplicons of positive common primer samples were extracted from agarose gel using FavorPrep Gel Purification Mini Kit (Cat. No. FAGPK001). Purified products were subjected to bidirectional sequencing using Macrogen facilities.

Sequence analysis
BLAST search was performed (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to investigate homologies with sequences available in database. The obtained DNA sequences were aligned using MAFFT [50]. The unalignable and gap-containing sites were deleted so that 300 bp were left for the analysis. The neighbor-joining phylogenetic tree was constructed with bootstrap analysis of 1000 replicates to represent the evolutionary history of the taxa analyzed [51]. The accession numbers used for comparison with our detected strains are shown in the phylogenetic tree.

Nucleotide sequence accession numbers
The partial 16S rRNA nucleotide sequences obtained in the current study were registered at GenBank under the following accession numbers: LC467272 (Anaplasma spp. MWG-2019, Ghafar-G24 strain) and LC467273 (Anaplasma spp. MWG-2019, Ghafar-G25 strain).

Results
Of 67 goats, 6 (9%) yielded positive results when PCR tested using common primers, whereas all of animals proved negative for A. phagocytophilum. Two positive common reaction amplicons were successfully sequenced, and BLAST search of their partial 16S rRNA gene sequences showed that there were no 100% identical sequences; therefore, the new names “Anaplasma spp. MWG-2019, Ghafar-G24” and “Anaplasma spp. MWG-2019, Ghafar-G25” were assigned. Ghafar-G24 possessed highest similarity (100% QC, 0.0 E-value, 99.52% ID) with A. ovis strain (JQ917900) detected in ticks from China. However, Ghafar-G25 showed highest identity (100% QC, 0.0 E-value, 96.13% ID) with A. bovis strain (KP314239) detected in Chinese ticks and with uncultured Anaplasma spp. (LC066137) detected in ticks from Bangladesh. Similarity features of our detected strains with species used in the phylogenetic tree are presented in Table-1. Phylogenetic analysis with recognized species representing Anaplasmataceae (Figure-1) revealed that Ghafar-G24 strain is closely related to and clustered...
with *A. ovis* of both animal and human origin. The phylogeny also placed Ghafar-G25 strain on a distinct, separate branch within a clade containing *A. bovis* and *Aegyptianella pullorum*.
Discussion

To date, very little is known about the magnitude of *Anaplasma* pathogens in Saudi Arabia. Few studies concerned microscopic examination of blood smears detected these bacteria in camel (40.5%), cattle (0.98%, 1%, and 3.4%), and sheep (2%) [52-54]. Other two serological surveys demonstrated the occurrence of *A. marginale* in camel (8.57% and 14%) [55], as well as *A. ovis* and *A. phagocytophilum* in sheep and goats [46]. In addition, only three molecular studies were performed to elucidate the molecular identity of *Anaplasma* spp. in the Kingdom [20,45,46]. Noteworthy, to the best of our knowledge, there is no study of any kind was performed on anaplasmosis in the human population. Therefore, the role of *Anaplasma* spp. in both animal and human medicine in KSA is not clear. In the present study, we tried to molecularly identify zoonotic *A. phagocytophilum* and other occurring *Anaplasma* spp. in goats residing in Taif district, KSA.

16S rRNA gene-based PCR and sequencing were employed in our experiment. This molecular technique proved invaluable in the detection and taxonomic classification of newly discovered bacteria and organisms that are difficult to grow in the laboratory. This is attributed to the fact that 16S rRNA gene is less variable and therefore is sensitive to phylogenetically discriminate between different species [1,56].

The negative detection of *A. phagocytophilum* in this study is consistent with the previous study conducted in the area to detect this pathogen in camel, cattle, and sheep [45]. Several plausible explanations could account for this negative result. The first, most likely, explanation is that Taif district is free of the disease due to the absence of competent vector in the area. The second, least likely, explanation is that the pathogen is present in low prevalence rate, but using of relatively small-sized sample (67 goats) led to the production of a biased result. The third, unlikely, explanation is that blood samples were collected after a short duration of bacteremia, and therefore, detection of the organism was impossible.

Six goats yielded positive results in PCR using common primers. BLAST search and phylogeny of the two successful sequences (Ghafar-G24 and Ghafar-G25) showed that the detected organisms belong to *Anaplasma* but distinct from all established species.

Ghafar-G24 clustered with *A. ovis* strains of tick, sheep, and human origin with identity ranged from 99.28% to 99.67% (Figure-1 and Table-1), suggesting that this organism is a variant strain of *A. ovis*. The variation in the short sequenced fragment (300 bp) may have a great impact on ecology and pathogenicity of the present strain, especially when associated with other genetic differences in protein-coding genes. Unfortunately, the clinical history of the tested goats was unavailable. Given the previous information, we cannot confirm that Ghafar-G24 strain can cause animal or human disease; however, the veterinary and human public health impact should be considered.

Ghafar-G25 strain showed genetic distance from other known *Anaplasma* species with highest relatedness (96.13% identity) to *A. bovis* and uncultured *Anaplasma* spp. Phylogeny clustered Ghafar-G25 strain with strains of *A. bovis* and *A. phagocytophilum* (Figure-1). Noteworthy, *A. pullorum* is still needed to be clarified whether it belongs to *Anaplasma* or remains in a distinct genus under *Anaplasmataceae* [2]. According to its level of 16S rRNA gene divergence and the cutoff value (99.0%) for species delineation [57], this strain can be potentially classified as novel species as sequence identities varied from 93.64% to 95.9% (Table-1) when blasted with all officially recognized *Anaplasma* species. Interestingly, the divergence seen in 16S rRNA gene between this Saudi Arabian strain and all known *Anaplasma* species is greater than the divergence seen between the established genera of *Anaplasmataceae*, providing strong evidence for the recognition of a putative new taxon at the genus level [41]. Given all the previous information, we cannot confirm that Ghafar-G25 constitutes a new genus or even a novel species as the formal description requires analysis of multiple other genes. Unfortunately, the amount of DNA available was limited and did not allow additional sequencing.

Detection of the novel *Anaplasma* agent in goats does not confirm that this animal species is a competent reservoir for this pathogen; however, this study is a crucial initial step in reservoir competence studies. Molecular detection and phylogeny of new *Anaplasma* species from different hosts and geographic areas are still needed for elucidating the taxonomic and phylogenetic relationships among *Anaplasmataceae* species. We cannot confirm that Ghafar-G25 bacteria can cause disease in animals or human; however, the veterinary health and zoonotic potential of this strain should be considered.

Conclusion

This study reports for the first time the presence of a potentially zoonotic variant strain of *A. ovis* and a tentative novel *Anaplasma* spp. in goats from Saudi Arabia. Other multiple genes should be sequenced and analyzed to reach the formal description of the detected organisms. Other investigations are also required to elucidate the epidemiology of the newly discovered agent including competent vector and reservoir, as well as geographic distribution. Pathogenicity to animals and zoonotic importance of the organism should also be determined.

Authors’ Contributions

MWG designed the study, collected the samples and materials, and performed the experiments. SAMA and MWG conducted molecular and phylogenetic analyses. Both authors wrote the manuscript. All authors read and approved the final manuscript.
Acknowledgments

The authors are thankful to the Biotechnology Department, Taif University, for providing facilities. The authors did not receive any external fund for this study. We would like to thank the veterinarian in charge and workers at Taif abattoir for their valuable help during the collection of blood samples.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Veterinary World remains neutral with regard to jurisdictional claims in published institutional affiliations.

References


